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Abstract

This document gives a description of various versions of the LULESH proxy application described
in [1]. All the the codes described in this document are available at https://codesign.llnl.
gov/lulesh.php. This report describes versions that fall into three categories: performance
tuning exploration, programming model exploration and other versions. In this document we focus on
giving a brief overview of what makes each version different from the others. The purpose is to allow
others to reuse our work as a starting point for their exploration. Therefore, references to publications
and presentations are provided to allow those who want more detailed information to be able to find
it.

1 Introduction
Hydrodynamics is widely used to model continuum material properties and material interactions

in the presence of applied forces. It can consume up to one third the runtime of these applications.
To provide a simpler, but still full-featured problem to test various tuning techniques and different
programming models the Livermore Unstructured Lagrange Explicit Shock Hydro (LULESH) mini-
app was created as one of five challenge problems in the DARPA UHPC program [1]. Hydrodynamics
was chosen as one of the challenge problems because it consumes 27% of data center resources
throughout DOD. Mini-apps like LULESH provide a smaller full featured program that allow for
less time consuming exploration of various programming models and performance tuning techniques
[10, 9]. The successful lessons learned from the mini-app exploration can then be applied to a full
application.

In this document we describe versions of LULESH that are implemented in different program-
ming models, performance tuned, and/or have additional functionality beyond the reference code.
Each of the versions described here is hosted or linked to from https://codesign.llnl.gov/
lulesh.php and is available for download. They are released under a BSD open source license. In
this report we do not go into detail about any particular port or model, but instead provide a high level
overview of what is available and the differences between each of these versions. References are pro-
vided where available to allow readers access to further details. We have tried to be as comprehensive
as possible based on the work we know about, but encourage submission of any additional work both
in code versions and publications.

The rest of the document is organized as follows. Section 2 contains an overview of the serial
reference version of LULESH. Then Section 3 describes programming models other than C++ that
LULESH is implemented in. Section 4 details various tuned versions of LULESH including a brief
description of the optimizations that have been applied, and limits on applying them, to ensure appli-
cability back to the real application. Next Section 5 discusses other work that adds functionality to
LULESH. Finally, Section 6 describes how to measure the performance of a LULESH version and
how to verify that a code is a correct implementation. Also, it details changes to LULESH that should
not be made. These changes while technically correct, since they will not change the answer, are not
possible to make in ALE3D the application LULESH is based on.



2 Serial Implementation
The serial reference implementation of the LULESH specification [1] is a mesh based physics code

on an unstructured hexahedral mesh with two centerings. The element centering (at the center of
each hexahedral) stores thermodynamic variables, such as energy and pressure. The nodal centering
(where the corners of hexahedrals intersect) stores kinematics values, such as positions and velocities.

The actual program flow involves a setup and initialization phase where the spatial coordinates of
the domain are defined. Then an index set is defined for the single material. The index set is used to
mimic multi-material problems and their associated algorithmic costs. Next, the initial problem state
and boundary conditions are defined.

The simulation is run via a time stepping algorithm followed by a time constraint calculation. The
algorithm consists of two major steps: advancing the node quantities, followed by advancing the
element quantities. Advancement of the node quantities requires calculating the nodal forces, which
is the most compute intense part of the simulation. First, the volume force contribution of each mesh
element is computed, followed by the stress values for each element. Then the contributions of each
element are summed to its eight surrounding nodes. After a diagnostic check for negative volumes,
the hourglass contribution is applied to each node’s forces on an element basis. The forces found
are then used to calculate accelerations via F = ma with appropriate symmetry boundary conditions
applied to the acceleration. Subsequently, the nodal velocities are advanced to the next time step using
the accelerations and then the positions are advanced using the velocities.

The second part of the algorithm involves advancing the element quantities. To advance element
quantities first kinematic values are calculated for the elements based on the new nodal positions and
velocities. Next artificial viscosities are calculated in two phases with element based values computed
first followed by the region based values. Next, material properties are applied to each element and
the equation of state is evaluated. Finally, the new volume calculated in the kinematics is stored for
use in the first phase of the algorithm at the next time step.

The last phase of LULESH is calculating the maximum timestep that can be taken to advance the
simulation further. The time constraints are used to limit how far in time the simulation advances at
the next time step. The time step is limited by two functions, which are each only applied to elements
whose volume are changing. The first calculates the courant constraint, which is the characteristic
length of an element divided by its change in volume. However, when the element is being com-
pressed additional terms are added. The second calculates the hydro constraint, which is a prescribed
maximum allowable volume change divided by the change in volume in the previous time step. The
minimum value of these constraints for all elements in the mesh limits the time step that can be taken
in the next timestep. The simulation can be run without any constraints if a small enough value is
chosen as a fixed time step.

3 Programming Model Ports
LULESH has been implemented in a wide variety of programming models. In this section, we

describe briefly each of the ports with an emphasis placed on implementation differences from the
serial implementation and the other models. A brief classification of the less common models is pre-
sented, but details are not covered. For more information about most of these ports along with a look
at the programmability, optimizability and performance portability of the LULESH implementations
in these languages please see [10].



3.1 MPI
The MPI [12] implementation of LULESH adds communication of ghost fields in two places. After

the force calculation the fx, fy and fz force values are communicated, so neighboring elements have
the same values at the nodes. Then a second exchange of delv xi, delv eta and delv zeta is needed
between the two phases on the monotonicq calculation. A final all-to-all communication is performed
to find the minimum courant constraint and the maximum hydro constraint across all tasks.
3.2 OpenMP

The OpenMP [4] implementation of LULESH adds thread level parallelism by placing #pragma
omp parallel for directives around the 45 loops over elements or nodes. In some cases multiple
loops are wrapped in the same parallel region, resulting in 30 parallel regions. There are two places in
LULESH where multiple threads can write data to the same node simultaneously. The resulting race
conditions occur in the stress and hourglass routines where values are calculated on a per element
basis and written to the nodes. To remove the race condition, all eight values computed for each
node are placed in a temporary array as they are calculated and then a second loop sums the values
to the nodes. The other changes necessary to support OpenMP in LULESH were in the hydro and
courant constraints where a reduction to find the minimum and maximum values is performed. The
base OpenMP version used OpenMP critical sections to protect this potential data race. Section
5 contains other versions of LULESH that handle these race conditions differently. However, the
OpenMP version described here has been the best performing on all architectures tried so far.
3.3 C Version

A pure C version of the OpenMP version of the code was created to as a starting point for an
OpenACC port. The only changes to get to this version are removing C++ constructs and other minor
syntactic changes. The OpenACC port is in progress and will be released when completed.
3.4 MPI plus OpenMP

The hybrid MPI plus OpenMP LULESH implementation uses MPI processes for between node
communication, and OpenMP to spawn threads within a process. OpenMP directives are put on the
same loops as the pure OpenMP code to obtain strong scaling within an MPI process. The reduction
of the hydro and courant constraints are made within the threads on a task before messages are sent
between tasks. The location of message passing constructs is unchanged from the pure MPI code.
3.5 CUDA

Mapping LULESH to CUDA is similar to mapping the code to OpenMP. Kernels generally either
map threads to mesh elements or mesh nodes. As in the OpenMP port, two element-centered kernels
need to accumulate force values into the adjacent nodes, causing potential parallel write conflicts.
Also, a reduction of the courant and hydro constraints on a node are needed. The same solution as
used in the OpenMP codes are applied in CUDA. Some optimizations specific to the Fermi based
GPU are contained in this version and the reader is referred to [10] for more details.
3.6 A++

A++ is an array language implemented in C++ as a class library. A++ provides arrays as objects
(data), and simple array operations (functions that operate on array objects). More information on the
language can be found in several online sources. The A++ version of LULESH was initially created
to explore a wide range of options for manipulating data layouts via array notation. This version of
the code is purely sequential, but the extensive use of array operations exposes significant amount of
potential concurrency. The use of array operations reduced overall code length by about 35%. This
version avoids the use of global array accesses; all data is passed by parameter to all functions. As



a result, the code can be useful for more quickly understanding the algorithms and data dependences
within LULESH. On the other hand, no effort has been expended to get the execution performance of
the A++ LULESH to levels comparable to other versions.
3.7 Chapel

Chapel uses a block-imperative syntax with optional support for object-oriented programming,
type inference, and other productivity-oriented features to support both task- and data-parallel styles
of programming [3]. The Chapel version of LULESH was initially created by transliterating the
OpenMP version into Chapel; for example, OpenMP’s parallel for loops were rewritten as
data-parallel forall loops in Chapel. Chapel domains were introduced to represent the sets of Nodes
and Elements, and their fields are stored using arrays defined by those domains. From this initial
version, further localized rewrites were applied to make better use of Chapel features and improve
performance. The code was converted from shared to distributed memory by applying the Block
distribution to the Nodes and Elements domains. Over the course of the code’s evolution, it was
changed from using regular 3D domains to an irregular 1D domain representation, and from using
dense representations of the material elements to sparse ones. Work on improving the benchmark
source is under way. Also, the Chapel version of LULESH is one of the applications being used to
assess and prioritize general improvements to the Chapel compiler.
3.8 Charm++

Charm++ is a parallel programming system that implements additions to C++ coupled with an
adaptive runtime system based on message-driven migrateable objects [8]. The Charm++ port leaves
the original C++ code that implements the physics computations of LULESH unchanged. The changes
to LULESH involved expressing the domain level information in terms of chares, which each store
a portion of a domain. The chares discretize the problem into sub-domains, with appropriate ghost
regions allowing over decomposition of the domain. The Charm++ version of the port includes the
same three communication patterns as the MPI implementation. Therefore, the only difference from
the MPI, other than the over decomposition is that the execution flow of the program is asynchronous
and data driven in Charm++.
3.9 Liszt

Liszt is a Scala-based domain-specific language for solving partial-differential equations on meshes
[5]. The Liszt implementation of LULESH is almost identical to the serial C++ version, modulo
syntactic differences. Race conditions in the stress and hourglass routines are handled implicitly
due to the atomicity of reductions, thus requiring no programmer intervention. The current Liszt
implementation does not preserve consistent planar orientation for mesh elements; hence for each
iteration the alignment of a cell’s vertices along the x,y and z planes needs to be recalculated in the
monotonicq gradient routine incurring additional overhead. From the Liszt source both C++ code and
CUDA can be generated to target both GPUs and CPUs.
3.10 Loci

Loci is a C++ framework that implements a declarative logic-relational programming model that is
implicitly parallel and uses relational abstractions to describe distributed irregular data structures [11].
The Loci implementation uses built-in 3D vector data-types to simplify the algorithm description.
Most of the work is offloaded to the compiler/runtime. The Loci preprocessor generates the loop over
entities and the run-time system uses set inferences to compute loop bounds automatically. Reductions
are described in Loci using a map-reduce formalism. For example, element contributions to nodal
forces are computed and then combined using the hexnodes relation that contains the indexes of the



nodes that form an element. Finally, Loci schedules communication such that the reductions are
applied consistently in parallel.
3.11 In Progress/Planned

An OpenCL port is currently being debugged. An initial implementation in OpenACC has been
started, but is not yet complete. Once these are complete more information will be added about them.

4 Tuned LULESH Versions
In exploring how to improve the performance of LULESH on various computing platforms we

have created tuned versions of LULESH. The code versions described here were created to learn
various lessons or to try out different techniques. They are not meant to be exhaustive or systematic
in the scope they cover. In this section, we first describe the optimizations that have been applied
to LULESH and then describe the naming convention, or how to identify what optimizations are in
each code version on the website. We then highlight the best known version on various machines for
which, we have LULESH test data.
4.1 Performance Optimizations

In this section we list the various performance tuning optimizations we have applied to LULESH.
More detail on how they were applied to LULESH and their impact on performance can be found in
[9].
4.1.1 Loop Fusion and Array Contraction

Loop fusion is an optimization that involves combining multiple loops over the same iteration space
into a single loop. When loops are fused arrays that only store data produced in the first loop that is
consumed in the second loop can be contracted to scalars [6]. In the OpenMP port fused versions of
LULESH take the 45 loops that occur at each timestep and reduce them to 12 loops; however, other
programming models may have slightly different loop counts. Fusion also reduces the number of
OpenMP parallel regions to 12 from 30. When fusing these loops, the fact that LULESH is a proxy
application meant to mimic ALE3D must be taken into account. The loops fused in the code on the
website represent the most aggressive fusion possible in the real code with two exceptions. First, the
courant and hydro calculations can be fused, but were not because of their relatively small runtime.
Second, the boundary condition loops can be fused with the acceleration update and nodal position
and velocity update calculation. However, this may require extra compute or data motion since the
boundary condition loop is only over part of the domain.

We also reorganized the code where data validity checks occurred. We moved four conditional
statements closer to the location where the data were initially calculated. By doing this we removed
redundant checks and also reduced data motion. These changes are included in all loop fused versions.
4.1.2 Global Allocation

By global allocation we mean all temporary variables are allocated outside of the main timestep
loop. This optimization reduces the runtime of the serial sections of LULESH where mallocs and
frees occur. Also, on systems that use lazy page allocation, runtimes are decreased due to not having
to setup a virtual to physical page mapping every timestep. Another way to a generate similar, but
not quite as good performance gains, on some systems is to use large pages or transparent huge
pages. Also, large page sizes and tcmalloc from the google perf tools library [7] provided similar
performance gains. However, the impacts of page fragmentation with these tools on more complex
codes has not been studied.



4.1.3 Increased Vectorization
We achieved increased vectorization in two ways: re-rolling loops and more aggressive techniques.

By re-rolling loops more information was provided to some compilers. Therefore, they were able
to vectorize loops that had been previously unrolled. This technique has been applied to six loops
in CalcElemFBHourglassForce and one loop in SumElemStressesToNodeForces. The second method
used to increase vectorization was significantly more invasive and is detailed in [9]. It results in up to
87% of all flops being vectorized, but is dependent on the compiler to vectorize the code.
4.1.4 NUMA Aware Data Allocation

The Mcsup library [2] has been used to perform NUMA aware data allocations. It works by trapping
all allocations of memory and making sure data is in the same NUMA domain as the task that accesses
it. However, Mcsup is not released software; so, we do not provide any NUMA aware versions at this
time. However, when the data in LULESH is allocated in a NUMA aware manner performance should
scale linearly.
4.2 Naming Convention Overview

Name Meaning
LULESH The file implements the LULESH algorithm.
MPI This code is a MPI implementation.
OPENMP This code is an OpenMP implementation.
¡Model Name¿ This code is implemented in the ¡Model Name¿ programming model.
FUSE Loop fusion, array contraction optimizations and if checks described in Section 4.1.1

are performed.
ALLOC Data allocation optimizations to remove all mallocs and frees from the timestep loop

as described in Section 4.1.2 are performed.
VECLOOP Vectorization by creating loops from previously unrolled code as described in

Section 4.1.3 is performed.
VECAGG Vectorization performing aggressive optimizations as described in Section 4.1.3 is

performed.

Tab. 1. LULESH file naming convention and meaning.
The performance versions on the website are named using the names and meanings in Table 1. All

codes use a single file when possible for simplicity. Files are named such that all optimizations and
programming models included in an implementation are concatenated together with an underscore
separating each descriptor. For example, LULESH MPI OMP ALLOC.cc is a C++ implementation
containing hybrid OMP and MPI parallelism along with the data allocation optimizations.
4.3 Best Versions

In this section we highlight the best performing OpenMP codes for various platforms on which we
have run extensive tests.
4.3.1 Lawrence Livermore Linux Clusters

On all the Linux clusters we have tried at Lawrence Livermore the version
LULESH OMP FUSE ALLOC VECAGG has performed the best when compiled with icc version
12.1.339 or newer. Platforms tried include an AMD Barcelona system, and Intel Nehalam, Westmere
and Sandybridge systems. For icc the best compiler options of the ones we tried are -O3 and -mavx
when applicable.



4.3.2 BlueGene/Q
On the BlueGene/Q architecture the LULESH OMP FUSE ALLOC code is the best performer.

For this platform we used version 12.0 of the xlc compiler and using the -O5 -qsimd=noauto options
produced the fasted code. At runtime the OMP WAIT POLICY=ACTIVE and
BG SMP FAST WAKEUP=YES flags were set.
4.3.3 Intel Xeon Phi

For the Intel Xeon Phi the LULESH OMP FUSE ALLOC VECAGG has shown the best perfor-
mance. We ran this code using KMP AFFINITY=compact and one less core than is on the card. It
was compiled using icc 13.0.0.79 with the -O3 -mmic options.

5 Other LULESH Versions
In this section we describe other LULESH versions that are available including how they differ and

include features from the previous sections.
5.1 Fully Unstructured

The original LULESH implementations use a block structured grid with an unstructured access
pattern. This version changes the mesh such that it is fully un-structured. The mesh is read in from a
file and one example is included with this version.
5.2 Vista Database

The original LULESH implementations have hard coded equation of state (EOS) data. In this ver-
sion instead of hard coded EOS, data lookups, are performed to a Vista database. The database is a
simplified version of the one found in ALE3D and allows the proxy-app to capture another character-
istic of the application it mimics.
5.3 One Dimensional Communication Pattern

The one dimensional communication pattern code changes how data are transferred in the hybrid
MPI plus OpenMP version of LULESH. Instead of having twenty-six neighbors to communicate to
each MPI process has only two. For massively multi-threaded hardware, such as the Intel MIC and
GPU, this communication pattern can be beneficial.
5.4 Clean Code

This version of LULESH is rewritten to remove all global data structures and to pass data by
reference. Also, the loop fusion, data allocation and loop rolled up vector optimizations are applied
to it. The goal is to create a code that expresses as much information as possible to the compiler and
increase readability. It outperforms the best version on both BlueGene/Q and Linux clusters when
similar options are used.
5.5 Transactional Memory

The transactional memory version of LULESH builds off the OpenMP implementation. In it the
extra data motion to store all eight values to be summed to the corners of a node and perform the
summation in the hourglass and stress routines are removed. Instead the summations are performed
as they are in the serial version with the twenty-four summations to nodes protected within a single
transaction region. Currently only the BlueGene/Q hardware supports transactions and on this ma-
chine using transactional memory is significantly slower than using extra data motion to prevent races.
This finding is true even in cases where there are no rollbacks.
5.6 Critical Sections

Like the transactional memory version this code builds from the OpenMP implementation. How-
ever, instead of using transactions to prevent data races it uses the omp critical directive. Tests



show this is the slowest way to handle data races on Livermore machines.
5.7 Fault Tolerant Checkpoint

With the fault-tolerant version, variables and objects identified as persistent are transparently saved
at checkpoint time [13]. Global variables in an application can be marked persistent by using a
compiler attribute defined as PERM. The checkpoint method uses a persistent memory allocator that
replaces the standard dynamic memory allocation functions with compatible versions that provide
persistent memory to application programs. Memory allocated with this allocator will persist between
program invocations after a call to a checkpoint function. This function essentially saves the state of
the heap and registered global variables to a file which may reside in flash memory or other node local
storage. Since the checkpoint data consists of an image file per node, it can be used by other inter-node
or global checkpoint schemes such as Scalable Checkpoint and Restart (SCR). A second fault-tolerant
version was implemented to demonstrate the use of SCR in conjunction with the persistent allocator.
In this case, nodes query SCR for a new filename before writing the persistent memory image to the
indicated SCR file. After closing a file, SCR manages its replication and distribution.
5.8 Planned Versions

A multi-region version of LULESH is planned. This version will mimic the control flow and access
patterns used by a multi-material code, but still perform the same one material calculation.

6 Performance Measurement and Correctness Checking
In this section we describe how to measure the performance of LULESH. We also detail how to

determine if an implementation is correct. Finally, we list a set of changes that should not be made to
LULESH.
6.1 Performance Measurement

Performance measurements of LULESH should ignore problem setup time and only measure the
time to timestep to solution because for large simulations setup will be a small part of the overall
runtime. Also, the setup in LULESH is not representative of the file IO and setup phase of ALE3D.
The performance of LULESH can be expressed in two meaningful ways both of which are output by
the versions on the website. Wall clock time gives how long a version takes to perform the simulation.
Grind time gives the time it takes to update a single zone for one iteration of the timestep loop.

When measuring the performance there are two options. One can use a fixed timestep and not use
the courant and hydro constraints. Alternatively, a dynamic timestep can be used and the courant and
hydro constraints timed.
6.2 Correctness Checking

Size Iteration Count Final Origin Energy
53 306 1.670602e+05
103 593 5.174622e+05
453 1495 4.261463e+05
503 1566 4.052502e+05
703 1816 3.453062e+05
903 2026 3.063249e+05

Tab. 2. Common on node sizes used for correctness checking and timing studies of LULESH

There is no method to establish the exact correctness of a LULESH port. However, the versions



p r i n t f ( ” I t e r a t i o n c o u n t = %i \n ” , domain . c y c l e ( ) ) ;
p r i n t f ( ” F i n a l O r i g i n Energy = %12.6 e \n ” , domain . e ( 0 ) ) ;

R e a l t MaxAbsDiff = R e a l t ( 0 . 0 ) ;
R e a l t T o t a l A b s D i f f = R e a l t ( 0 . 0 ) ;
R e a l t MaxRelDiff = R e a l t ( 0 . 0 ) ;

f o r ( I n d e x t j =0 ; j<edgeElems ; ++ j ) {
f o r ( I n d e x t k= j +1; k<edgeElems ; ++k ) {

R e a l t AbsDi f f = FABS( domain . e ( j ∗ edgeElems+k )
− domain . e ( k∗ edgeElems+ j ) ) ;

T o t a l A b s D i f f += AbsDif f ;
i f ( MaxAbsDiff <AbsDif f ) MaxAbsDiff = AbsDif f ;
R e a l t R e l D i f f = AbsDi f f / domain . e ( k∗ edgeElems+ j ) ;
i f ( MaxRelDiff <R e l D i f f ) MaxRelDiff = R e l D i f f ;

}
}

p r i n t f ( ” T e s t i n g P l a n e 0 of Energy Array :\ n ” ) ;
p r i n t f ( ” MaxAbsDiff = %12.6 e\n ” , MaxAbsDiff ) ;
p r i n t f ( ” T o t a l A b s D i f f = %12.6 e\n ” , T o t a l A b s D i f f ) ;
p r i n t f ( ” MaxRelDiff = %12.6 e\n\n ” , MaxRelDiff ) ;

Fig. 1. C code to perform correctness checking of LULESH.



on the website were tested using the C code in Figure 1 that calculates and prints the following
three metrics. The iteration count of the implementation should match exactly. The energy at the
origin when the simulation completes should be correct to at least six digits. The three measures of
symmetry should all be 10−8 or smaller in double precision for 1003 mesh discretizations of smaller.
While errors may still exist in your version of LULESH even if all these tests are passed we have
found that they have caught innumerable major and minor bugs. As a reference we provide the final
origin energy and number of iterations for sizes used to validate many versions in Table 2. The small
sizes are helpful to quickly turnaround debugging runs and the larger ones for final validation.
6.3 Changes not to make to LULESH

When creating LULESH, certain simplifications were made in its structure and design to generate
a single code with a serial version of less than 3000 lines and no external dependencies. Therefore,
certain parts of LULESH can be changed to improve performance or ease implementation. However,
making those changes will result in LULESH no longer being representative of ALE3D. In this section
we list several changes, but this list may not be exhaustive.
6.3.1 Mesh Representation

LULESH uses a block structured mesh accessed via an indirect reference pattern. Therefore, one
can write a correct version of LULESH without any of the indirection arrays, increasing performance
and code simplicity. However, ALE3D is a fully unstructured application so accessing LULESH’s
arrays in this manner would oversimplify LULESH.
6.3.2 Loop Structure

In Section 4 we mentioned the loops we fused and did not fuse when tuning LULESH. There are
two reasons why loops in LULESH should not be fused. The first is multi-material loops. Since
LULESH solves the sedov problem on a single material it does not have loops over materials. How-
ever, in ALE3D there are loops over materials that make fusing neighboring loops impractical. The
multi-region version of LULESH will contain the added loops to show where multi-material loops
would go if we were simulating a multi-material problem in LULESH. The second reason for not fus-
ing loops is code complexity and maintainability. While the stress computation in LULESH can be
fused with the hourglass computation, when there are multiple options for both stress and hourglass
routines as in ALE3D, fusing them together creates code maintenance issues.
6.3.3 Extra Compute

In the stress calculation of LULESH there is extra computational work performed. While not
necessary for solving the sedov problem this compute was put in to model other computation in
ALE3D that would not otherwise be represented when solving the sedov problem in LULESH. It also
serves as a test of the compiler’s ability to optimize code, which is important when using LULESH as
a benchmark. The compute is found in the first call to the shape derivative calculation.
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